BLOC-3 Mutated in Hermansky-Pudlak Syndrome Is a Rab32/38 Guanine Nucleotide Exchange Factor
نویسندگان
چکیده
Hermansky-Pudlak syndrome (HPS) is a human disease characterized by partial loss of pigmentation and impaired blood clotting. These symptoms are caused by defects in the biogenesis of melanosomes and platelet dense granules, often referred to as lysosome-related organelles. Genes mutated in HPS encode subunits of the biogenesis of lysosome-related organelles complexes (BLOCs). BLOC-1 and BLOC-2, together with the AP-3 clathrin adaptor complex, act at early endosomes to sort components required for melanin formation and melanosome biogenesis away from the degradative lysosomal pathway toward early stage melanosomes. However the molecular functions of the Hps1-Hps4 complex BLOC-3 remain mysterious. Like other trafficking pathways, melanosome biogenesis and transport of enzymes involved in pigmentation involves specific Rab GTPases, in this instance Rab32 and Rab38. We now demonstrate that BLOC-3 is a Rab32 and Rab38 guanine nucleotide exchange factor (GEF). Silencing of the BLOC-3 subunits Hps1 and Hps4 results in the mislocalization of Rab32 and Rab38 and reduction in pigmentation. In addition, we show that BLOC-3 can promote specific membrane recruitment of Rab32/38. BLOC-3 therefore defines a novel Rab GEF family with a specific function in the biogenesis of lysosome-related organelles.
منابع مشابه
Organelle Biogenesis: En BLOC Exchange for RAB32 and RAB38
Prominent subtypes of the genetic disorder Hermansky-Pudlak syndrome result from defects in a mysterious protein complex, BLOC-3. New work identifies BLOC-3 as a guanine nucleotide exchange factor for two RAB GTPases previously implicated in lysosome-related organelle biogenesis.
متن کاملThe WASH complex, an endosomal Arp2/3 activator, interacts with the Hermansky–Pudlak syndrome complex BLOC-1 and its cargo phosphatidylinositol-4-kinase type IIα
Vesicle biogenesis machinery components such as coat proteins can interact with the actin cytoskeleton for cargo sorting into multiple pathways. It is unknown, however, whether these interactions are a general requirement for the diverse endosome traffic routes. In this study, we identify actin cytoskeleton regulators as previously unrecognized interactors of complexes associated with the Herma...
متن کاملGenetic modifiers of abnormal organelle biogenesis in a Drosophila model of BLOC-1 deficiency.
Biogenesis of lysosome-related organelles complex 1 (BLOC-1) is a protein complex formed by the products of eight distinct genes. Loss-of-function mutations in two of these genes, DTNBP1 and BLOC1S3, cause Hermansky-Pudlak syndrome, a human disorder characterized by defective biogenesis of lysosome-related organelles. In addition, haplotype variants within the same two genes have been postulate...
متن کاملA Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.
Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is count...
متن کاملRab32 restriction of intracellular bacterial pathogens.
Our immune system is engaged in a continuous battle against invading pathogens, many of which have evolved to survive in intracellular niches of mammalian hosts. A variety of cellular processes are involved in preventing bacterial invasion or in killing bacteria that successfully invade host cells. Recently, the Rab GTPase Rab32 emerged as critical regulator of a host defense pathway that can e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 22 شماره
صفحات -
تاریخ انتشار 2012